skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van_Wie, BJ"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hands-on, active learning in engineering courses fosters deeper understanding, collaboration, and social skills for students. This paper reports on the design, fabrication, and testing of a transparent miniaturized shell-and-tube heat exchanger module for engineering thermo-fluids classes. This module was also implemented for in-class heat exchanger instruction, where students (sample size, N = 75) conducted hands-on experiments following the instructions provided in the associated worksheet, participated in pre-tests and post-tests, analyzed the experimental data, and provided their feedback through motivational surveys. The performance test data obtained from the developed desktop heat exchanger module shows that the experimental heat transfer rates are in good agreement with theoretically predicted values calculated based on the standard correlations and assumptions. The pre-test and post-test assessments show that the use of this miniaturized shell-and-tube heat exchanger module in classroom instruction improves fundamental understanding of the heat exchange process and enhances student comprehension of complex phenomena of fluid flow patterns and heat transfer in the different parts of the heat exchanger. The motivational assessments demonstrate the module’s efficacy in elucidating the underlying heat transfer mechanisms and facilitating active engagement. The developed low-cost, handson heat exchanger can be used in undergraduate thermo-fluids engineering education for visualizing and better understanding of heat transfer principles, enhancing engagement of students, improving retention of fundamental concepts, and finally bridging the gap between theoretical abstractions and real-world applications. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  2. In this study we examined the first-time use of a miniaturized fluidized bed module in a chemical engineering classroom. Learning activities were developed to foster learning at the higher levels of Bloom's taxonomy and within the ICAP framework to provide interactive, constructive, and active engagement to promote a deeper understanding of concepts. A hands-on activity facilitated by a desktop-scale fluidized bed and reinforcing printed worksheet materials was deployed within a 50-minute class to encourage student engagement. Results from module performance tests compare well to predictions based on theoretical models suggesting this tool can effectively demonstrate fundamental concepts related to pressure loss in a packed bed, minimum fluidization velocity, constant pressure drop in a fluidized bed, bed expansion and repacking below a top screen. Pre- and Posttests 1 and 2 show student learning was significantly improved after pre-homework and the hands-on activity compared to the learning after the lecture alone. Student responses to two open-ended questions on Pre- and Posttests 1 and 2 allowed us to identify persisting student misconceptions about packed and fluidized beds. Suggestions for future work to repair these misconceptions are included in this study. 
    more » « less
    Free, publicly-accessible full text available January 31, 2026
  3. Osteoarthritis, a chronic disease, remains an issue for adults that causes cartilage degradation within a joint . According to the Centers forDisease Control and Prevention (2023), over 32.5 million adults in the US are affected by osteoarthritis (OA). In this study we seek tounderstand the connection between tissue engineering and genetics to regenerate human articular cartilage (hAC). We purpose to validatea protocol for RNA isolation and characterize the transcriptome of hAC in a tri-layer fashion via bulk RNA sequencing (bulk-RNA-seq).Additionally, we aim to analyze the transcriptome of normal articular cartilage in comparison to the hAC chemical composition and physicalproperties. We are relating these properties to the tri-layers of hAC through histological staining with Safranin O—Fast green and imagingwith differential interference contrast (DIC) microscopy. We are relating these properties to superfic ial, middle, and deep zone with acryotome procedure, RNA extracted, and qualified by Bioanalyzer. Next, we generate bulk RNA sequencing of hAC layer-by-layer andcompare results to early passaging of Mesenchymal Stromal Cells (MSC) and tissues intended for Matrix-Induced Autologous ChondrocyteImplantation (MACI). We will use differential gene expression (DE) analysis by DESeq2 R package software for bulk-RNA-seq. The resultwill be interpreted in terms of differentiation from MSCs to gene expression patterns of tri-layer hAC. We will report on development andvalidation of protocols for isolating cells and their subsequent characterization with application in regenerating the tri-layered hACtranscriptome stimulatory bioreactors used in our laboratory and corresponding properties of the extracellular matrix (ECM) 
    more » « less